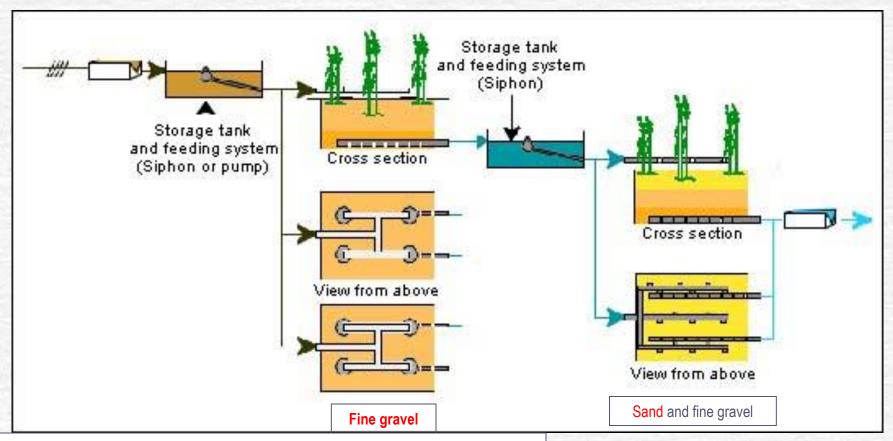
Waste free wastewater treatment wetlands in France

Dirk ESSER dirk.esser@sint.fr

Short Biography

- Dirk ESSER, agricultural engineer from Germany
- Came to France in 1988 to do prost-graduate studies and research work with Cemagref, now IRSTEA (public research institute)
- Created SINT in 1991 to develop a new wetland system under license from Cemagref > "Phragmifilter®" (excl. license until 2003), also known as "French System", which are vertical flow filters, planted with common reeds (Phragmites), treating raw, unsettled sewage, thus producing NO WASTE
- Associated partner of SINBIO (www.sinbio.fr) SYNTEA (www.synteanature.com) treasurer of GWT



, co-founder and

Lay-out of a typical Phragmifilter®

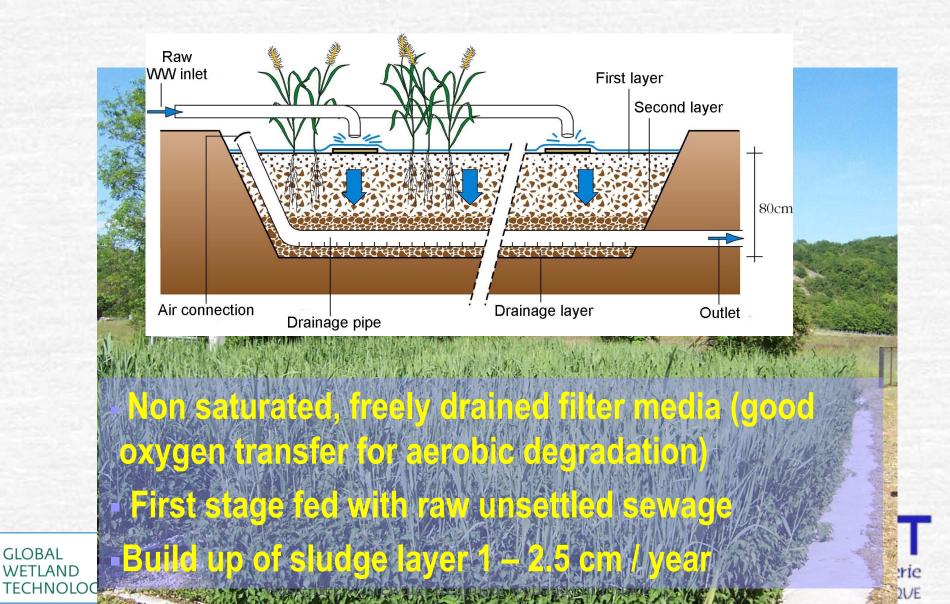
1st stage: 3 * 0.4 m² per person 1.2 m²/p.e. (100 g COD .m-².d-1 on the total filter surface, max 0,7 m. d-1 on the filter in operation)

- Three parallel filters
- •feeding/resting:3-4d/7d

2nd stage: 2 * 0.4 m² per person 0,8 m²/p.e.

- Two parallel filters
- •feeding/resting: 7d/7d

Societe d'Ingenierie NATURE & TECHNIQUE



A typical Phragmifilter, working by gravity, before planting of reeds

The first stage of a Phragmifilter®

Feeding of the first stage of a Phragmifilter®

Needs a good distribution of the water and the waste water solids on the entire surface of the filter

Can be achieved by gravity, if sufficient slope, NO ENERGY needed

With the patented selfpriming siphon

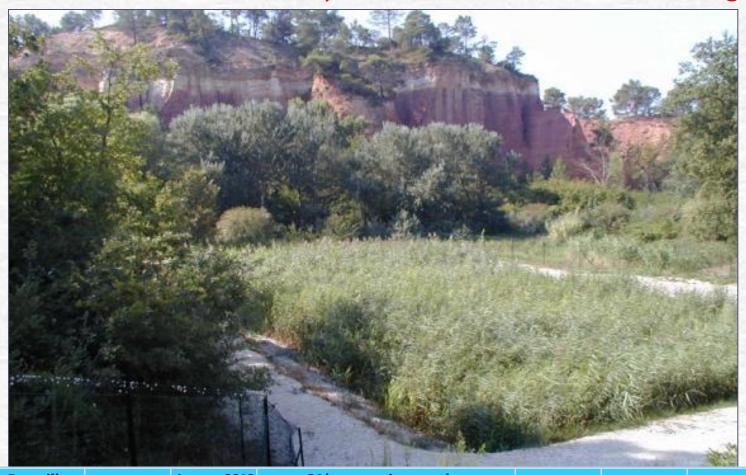
GLOBAL

Sludge quality

The sludge retained on the first bed looks and smells like a compost

	Analyse	Résı	ultat sı	ır le brı	ıt	Méthode d'Analyse
pH (eau à 20°	C)		. 6	.4		NF EN 12 176
Dry matter			. 30	6.2 %	, o	NF EN 12880
	Analyse	Résultat	/sec	/ bru	t	Méthode d'Analyse
Organic matter	e par Perte au Fei	I	256	92.8	0/00	NF EN 12879 (matières volatiles)
Carbone Orga	anique (C)		148	53.8	0/00	Combustion Sèche NF ISO 10694
Azote Total (N)		22.5	8.1	0/00	Azote Kjeldahl méthode interne MA7-77
Rapport C/N .			6.6	6.6		Calcul : C organique / N total
Azote Ammor	niacal (N-NH4)	<	0.05	< 0.05	0/00	Extraction KCI M & Dosage color. Berthelot
Phosphore To	otal (P2O5)		22.6	8.17	0/00	NF EN 13346, Dosage ICP AES NF EN ISO 11885
Potassium To	tal (K2O)		2.68	0.97	0/00	NF EN 13346, Dosage ICP AES NF EN ISO 11885
Calcium Total	(CaO)		53.1	19.2	0/00	NF EN 13346, Dosage ICP AES NF EN ISO 11885
Magnésium T	otal (MgO)		5.48	1.98	0/00	NF EN 13346, Dosage ICP AES NF EN ISO 11885

Montromant (200 p.e.), 500 m² of filter, near Lyons, built in 1994, one desludging


	Montromant		August 2013	24 h c	composite sar	nples				
	Flow	COD	BOD ₅	SS	TKN	N-NH4	TN	TP	% of nomina	l load
	m3/day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Inflow	15,4	1280	400	770	103		103	13,9	82,13%	
Outlow		80	6	24	4,8	1,4	120	8		

Roussillon, 1250 p.e., 1550 m² of filter, south of France (mediterranean climate) built1998, one desludging

	Koussillon		August 2010	24 n (composite sai	mpies				
	Flow	COD	BOD ₅	SS	TKN	N-NH4	TN	TP	% of nomina	lload
	m3/day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Inflow	260	662	310	358	81				114,75%	
Outlow		45	< 3	4,4	3,5			8		

Performance of Roussillon Reed bed filter treatment plant:

		Inflow Average Min. MAX.			Ou	tflow		Discharge Limits	Removal %
	Number of analyses	-	Min.	MAX.	Average	Min.	MAX.		
COD (mg O2/L)	10	921	573	1677	40	20	71	125	95.7
BOD₅ (mgO2/L)	10	504	262	1102	6	1	19	25	98.7
TSS (mg/L)	10	402	198	1072	7	0	17	35	98.3
TKN (mgN/L)	7	74	25	119	5	2	11		92.7

Some more recent references...

	Fr	ance	_							
	Nègrepelisse April 2011				hour compos	site				8
	Flow	COD	BOD ₅	SS	TKN	N-NH4	TN	TP	% of nomina	load
	m3/day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Inflow	476	886	348	362	51,6	50,3	51,6	10,8	87,86%	
Outlow		63	4	10	3,1	1	23,2	6,7		n
										N

NIQUE

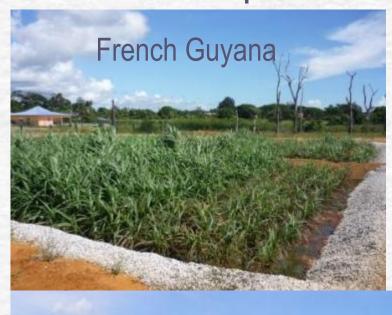
Some more recent references...



GLOBAL WETLAND TECHNOLOGY

	COD	BOD ₅	SS	TKN	
	mg/L	mg/L	mg/L	mg/L	
Inflow	250	210	320	44	
Outlow	< 30	<3	2	<2	

Some more recent references...


Les Halles - Rhône, near Lyons – 2013, 800 p.e. – about 2000 m² of filter surface : denitrification and P-removal with zero energy

THE AL
epur nature

	Les Halles		July 2014	24 hour composite						
	Flow	COD	BOD ₅	SS	TKN	N-NH4	TN	TP	% of nomina	l load
	m3/day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Inflow	60	663	260	420	89,4	54	89,4	8,6	41,44%	
Outlow	48,3	< 30	<3	3	<3	0,6	19	1		

Phragmifilters® in the French overseas departments and territories

Mayotte

New Caledonia

≋INT Société d'Ingénierie NATURE & TECHNIQUE

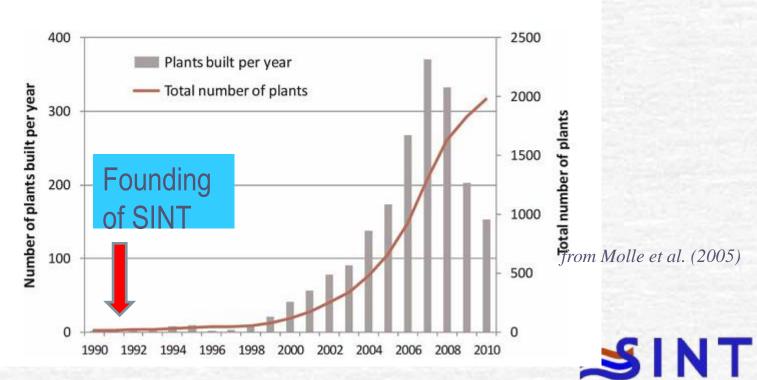
Efficiency and outflow concentrations for the two stages

Phragmifilter®

(from Epur Nature database)

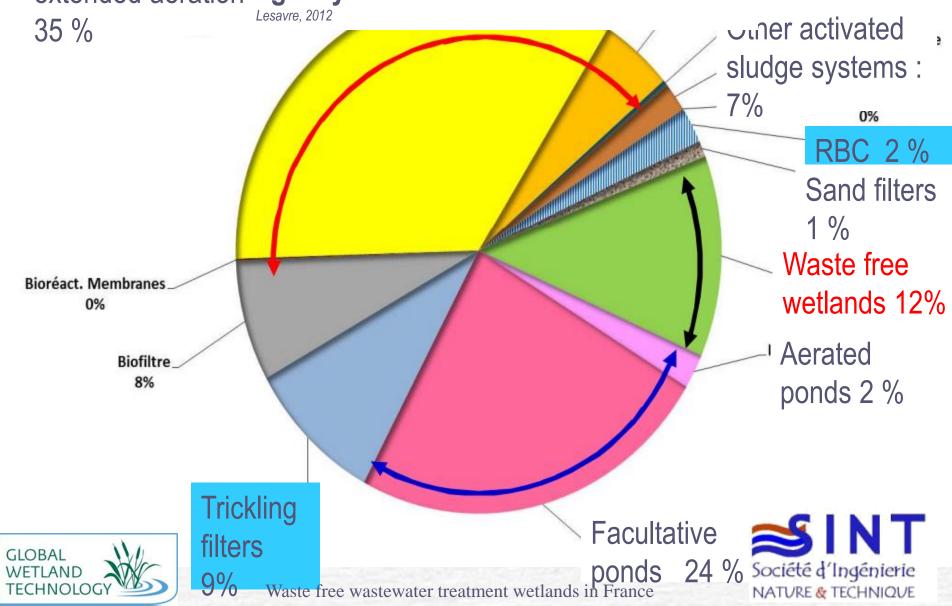
					10	20	30	40	
COD						80	90	95	
BOD5			Mean	Median	SD		percentile		Nb
SS	COD	mg/L	50,27	41,00	28,89	62,60		91,40	74
ΓKN 	BOD5	mg/L	7,91	5,00	9,09	10,40	15,70	19,70	74
ГР	SS	mg/L	8,37	7,00	6,45	11,00	15,96	17,70	74
	TKN	mg/L	6,86	3,00	11,52	6,86	11,27	21,51	20
	TP	mg/L	5,70	5,70	3,05	6,94	10,25	10,82	20

					10	20	30	40		
		Mean	Median	SD	perc aux	percentile	percentile	percentile	Nb	
COD	%	78,77	81,31	13,48	64,48	72,00	73,66	77,29	62	
BOD5	%	22.22	^^^_	Moan	en en	20 parcontile	00 porcos	otilo 05 porcor	atilo Nh	
SS	%			IVICALI	JU	ou percentile	30 percer	illie 199 hercer	IIIIE IND	
	%	COD	mg/L	126,53	76,89	16	7 22	24,8 31	2,95	62
TP	%	SS	mg/L	31,61	20,15	5	0	62	64	62
		TKN	mg/L	19,69	14,55	25,	2 3	38,6	46,3	11
	BOD5 SS TKN	BOD5 % SS % TKN %	COD % 78,77 BOD5 % SS % TKN % COD SS	COD % 78,77 81,31 BOD5 % SS % COD mg/L TKN % SS mg/L	COD % 78,77 81,31 13,48 BOD5 % Mean SS % COD mg/L 126,53 TP % SS mg/L 31,61	COD % 78,77 81,31 13,48 64,48 BOD5 % Mean SD SS % COD mg/L 126,53 76,89 TP % SS mg/L 31,61 20,15	COD % 78,77 81,31 13,48 64,48 72,00 BOD5 % Mean SD 80 percentile TKN % COD mg/L 126,53 76,89 16 TP % ss mg/L 31,61 20,15 5	COD % 78,77 81,31 13,48 64,48 72,00 73,66 BOD5 % Mean SD 80 percentile 90 percentile TKN % COD mg/L 126,53 76,89 167 22 TP % ss mg/L 31,61 20,15 50	COD % 78,77 81,31 13,48 64,48 72,00 73,66 77,29 BOD5 % Mean SD 80 percentile 90 percentile 95 percentile TKN % COD mg/L 126,53 76,89 167 224,8 31 TP % ss mg/L 31,61 20,15 50 62	Mean Median SD percentile percentile percentile percentile percentile Nb COD % 78,77 81,31 13,48 64,48 72,00 73,66 77,29 62 BOD5 % Mean SD 80 percentile 90 percentile 95 percentile Nb TKN % COD mg/L 126,53 76,89 167 224,8 312,95 TP % ss mg/L 31,61 20,15 50 62 64


Efficiency and outflow concentrations for the first

Development of waste free wastewater treatment wetlands in France

Around 3200 treatment wetlands in France, serving communities from 40 to 4000 people (500 designed by SINT between 1992 and 2007)



Société d'Ingénierie

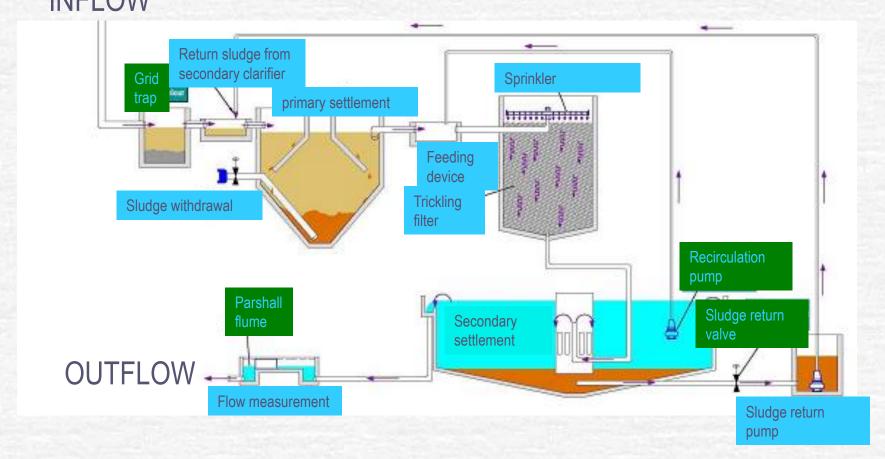
NATURE & TECHNIQUE

Municipal WWTP in France (19300 Activated sludge – plants in 2012) according to water extended aeration agency data base

Extra light weight patented self priming siphon, brought to the site by helicopter

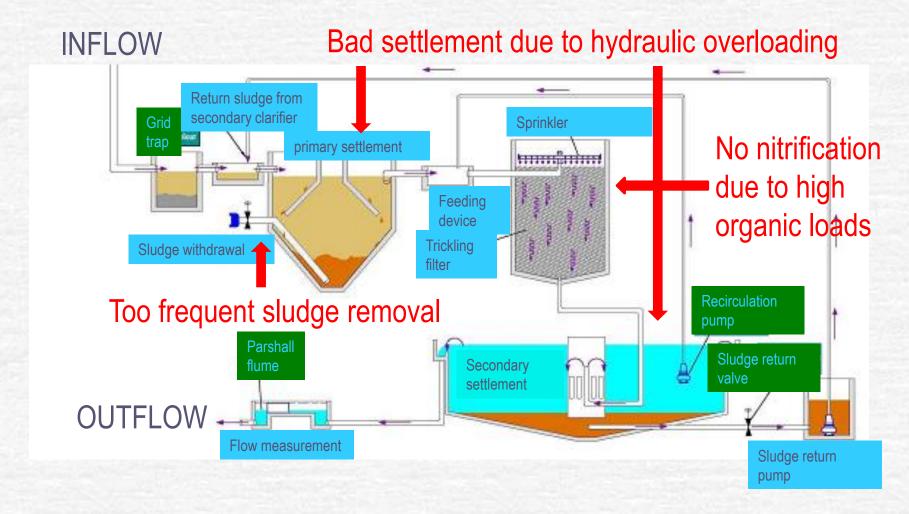
GLOBAL WETLAND TECHNOLOGY Société d'Ingénierie NATURE & TECHNIQUE

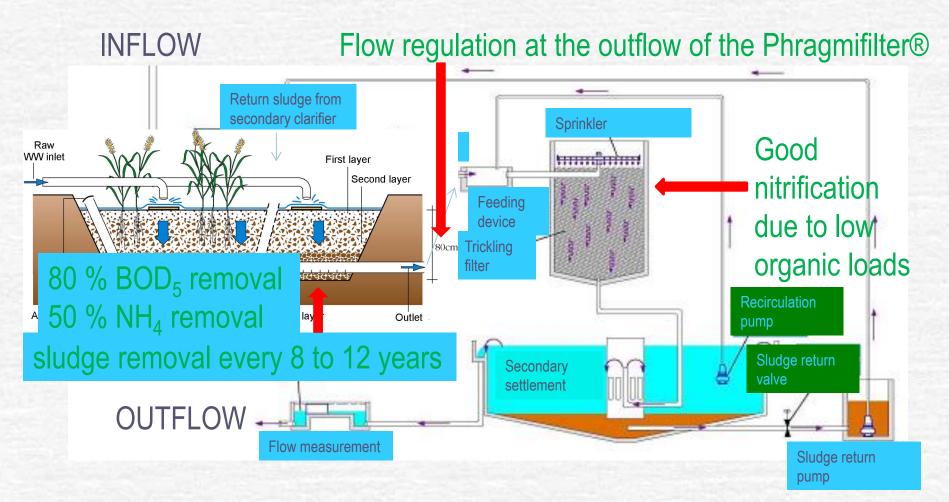
Treating high strength wastewater from agrofood industries with activated sludge plus wetlands


Reed bed filters for polishing, clarification and sludge treatment

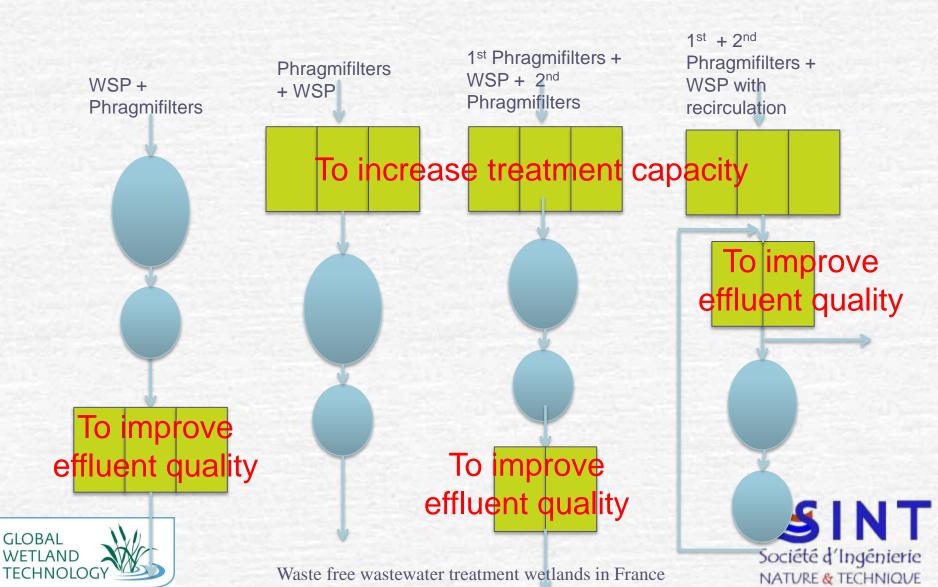
Société d'Ingénierie

NATURE & TECHNIQUE

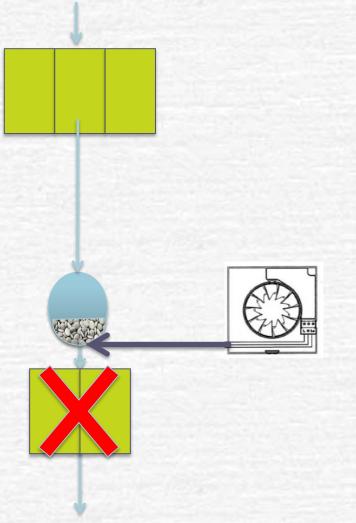

Upgrading of trickling filters with Phragmifilters®


Frequent problems of trickling filters

And how to resolve them...


NATURE & TECHNIQUE

Upgrading of waste stabilization ponds with Phragmifilters®


About 4 600 waste stabilsation ponds in France

- Treatment ponds getting old (most of them built in the late 80's and 90's):
 - need to increase the treatment capacity
 - need to improve the effluent quality / removal efficiencies
- Mix waste stabilisation ponds with Phragmifilters®
 - o 1st stage Phragmifilter upstream of ponds + to increase the treatment capacity
 - 2nd stage Phragmifilter donstream of ponds: to improve the effluent quality
 - Double objective: ponds between the two stages

Possible configurations

A cheaper alternative to improve the effluent quality of ponds: the rock filter

Aerated if nitrification is required

Advantages of keeping ponds in Phragmifilter configurations

Ponds provide some treatment of total P and N, especially during summer (when receiving waters are most fragile)

Outlet Conc. Aver	age 13,	7 82,3	24,7	27,0	21,3	2,4	29,2	4,2
12 (Ng/I) SI								
(1118/1)) 2,9	7,0	6,7	0,7	1,5	1,6	1,5	1,5 7
Removal (%)	age 94%	6 88%	92%	71%	67%	-	69%	60%
SI	2,29	6 2,7%	4,1%	7,3%	4,5%	_	8,2%	5,8%

Ponds can provide good pathogen removal, if required

Dziękuję!

www.epurnature.fr www.synteanature.com www.sinbio.fr www.globalwettech.com

